ЗдоровьеНовые публикации

Электромагнитное реле: устройство, виды, маркировка, подключение и регулировка

Преобразование электрических сигналов в соответствующую физическую величину — движение, сила, звук и т. д., осуществляется с помощью приводов. Классифицировать привод следует как преобразователь, поскольку это устройство изменяет один тип физической величины в другой.

Привод обычно активируется или управляется командным сигналом низкого напряжения. Классифицируется дополнительно как двоичное или непрерывное устройство исходя из числа стабильных состояний. Так, электромагнитное реле является двоичным приводом, учитывая два имеющихся стабильных состояния: включено — отключено.

Содержание статьи:

  • Основы исполнения привода
  • Основополагающие принципы работы ЭМР
    • Общее строение прибора
    • Действие релейной электромагнитной системы
    • Электрические контактные группы реле
    • Особенности прохождения токов нагрузки
    • Тип материала контактов реле
  • Типичное исполнение контактов ЭМР
    • Особенности исполнения соединительных элементов
    • Тонкости применения приборов
    • Приемы защиты от обратного напряжения
    • Маркировка электромагнитных релейных приборов
  • Выводы и полезное видео по теме

Основы исполнения привода

Термин «реле» является характерным для устройств, которыми обеспечивается электрическое соединение между двумя и более точками посредством управляющего сигнала.

Наиболее распространенным и широко используемым типом электромагнитного реле (ЭМР) является электромеханическая конструкция.

Электромагнитное реле

Так выглядит одна конструкция из многочисленного ряда изделий, именуемых как электромагнитные реле. Здесь показан закрытый вариант механизма с использованием крышки из прозрачного оргстекла

Схема фундаментального контроля над любым оборудованием всегда предусматривает возможность включения и отключения. Самый простой способ выполнить эти действия — использовать переключатели блокировки подачи питания.

Переключатели ручного действия могут использоваться для управления, но имеют недостатки. Явный их недостаток – установка состояний «включено» или «отключено» физическим путем, то есть вручную.

Устройства ручного переключения, как правило, крупногабаритные, замедленного действия, способные коммутировать небольшие токи.

Кулачковый переключатель

Ручной механизм переключения – дальний родственник электромагнитных контакторов. Обеспечивает тем же функционалом – коммутацией рабочих линий, но управляется исключительно вручную

Между тем электромагнитные реле представлены в основном переключателями с электрическим управлением. Приборы имеют разные формы, габариты и разделяются по уровню номинальных мощностей. Возможности их применения обширны.

Такие приборы, оснащенные одной или несколькими парами контактов, могут входить в единую конструкцию более крупных силовых исполнительных механизмов — контакторов, что используются для коммутации сетевого напряжения или высоковольтных устройств.

Основополагающие принципы работы ЭМР

Традиционно реле электромагнитного типа используются в составе электрических (электронных) схем управления коммутацией. При этом устанавливаются они либо непосредственно на печатных платах, либо в свободном положении.

Общее строение прибора

Токи нагрузки используемых изделий обычно измеряются от долей ампера до 20 А и более. Релейные цепи широко распространены в электронной практике.

Разнообразие электромагнитных реле

Приборы самой разной конфигурации, рассчитанные под инсталляцию на монтажных электронных платах либо непосредственно в виде отдельно устанавливаемого устройства

Конструкция электромагнитного реле преобразует магнитный поток, создаваемый приложенным напряжением переменного/постоянного тока, в механическое усилие. Благодаря полученному механическому усилию, выполняется управление контактной группой.

Наиболее распространенной конструкцией является форма изделия, включающая следующие компоненты:

  • возбуждающую катушку;
  • стальной сердечник;
  • опорное шасси;
  • контактную группу.

Стальной сердечник имеет фиксированную часть, называемую коромысло, и подвижную подпружиненную деталь, именуемую якорем.

По сути, якорь дополняет цепь магнитного поля, закрывая воздушный зазор между неподвижной электрической катушкой и подвижной арматурой.

Конструкция электромагнитного реле

Детальный расклад конструкции: 1 – пружина отжимающая; 2 – сердечник металлический; 3 – якорь; 4 – контакт нормально закрытый; 5 – контакт нормально открытый; 6 – общий контакт; 7 – катушка медного провода; 8 — коромысло

Арматура движется на шарнирах или поворачивается свободно под действием генерируемого магнитного поля. При этом замыкаются электрические контакты, прикрепленные к арматуре.

Как правило, расположенная между коромыслом и якорем пружина (пружины) обратного хода возвращает контакты в исходное положение, когда катушка реле находится в обесточенном состоянии.

Действие релейной электромагнитной системы

Простая классическая конструкция ЭМР имеет две совокупности электропроводящих контактов. Исходя из этого, реализуются два состояния контактной группы:

  1. Нормально разомкнутый контакт.
  2. Нормально замкнутый контакт.

Соответственно пара контактов классифицируется нормально открытыми (NO) или, будучи в ином состоянии, нормально закрытыми (NC).

Для реле с нормально разомкнутым положением контактов, состояние «замкнуто» достигается, только когда ток возбуждения проходит через индуктивную катушку.

Реле с нормально замкнутым контактом

Один из двух возможных вариантов установки контактной группы по умолчанию. Здесь в обесточенном состоянии катушки по умолчанию установлено нормально закрытое (замкнутое) положение

В другом варианте — нормально закрытое положение контактов остается постоянным, когда ток возбуждения отсутствует в контуре катушки. То есть контакты переключателя возвращаются в их нормальное замкнутое положение.

Поэтому термины «нормально открытый» и «нормально закрытый» следует относить к состоянию электрических контактов, когда катушка реле обесточена, то есть напряжение питания реле отключено.

Электрические контактные группы реле

Релейные контакты представлены обычно электропроводящими металлическими элементами, которые соприкасаются друг с другом, замыкают цепь, действуя аналогично простому выключателю.

Когда контакты разомкнуты, сопротивление между нормально открытыми контактами измеряется высоким значением в мегаомах. Так создается условие разомкнутой цепи, когда прохождение тока в контуре катушки исключается.

Контактное сопротивление реле

Контактная группа любого электромеханического коммутатора в разомкнутом режиме имеет сопротивление в несколько сотен мегаом. Величина этого сопротивления может несколько отличаться у разных моделей

Если же контакты замкнуты, контактное сопротивление теоретически должно равняться нулю — результат короткого замыкания.

Однако подобное состояние отмечается не всегда. Контактная группа каждого отдельного реле обладает определенным контактным сопротивлением в состоянии «замкнуто». Такое сопротивление называется устойчивым.

Особенности прохождения токов нагрузки

Для практики установки нового электромагнитного реле, контактное сопротивление включения отмечается малой величиной, обычно менее 0,2 Ом.

Объясняется это просто: новые наконечники остаются пока что чистыми, но со временем сопротивление наконечника неизбежно будет увеличиваться.

Например, для контактов под током 10 А, падение напряжения составит 0,2х10 = 2 вольта (закон Ома). Отсюда получается — если подводимое на контактную группу напряжение питания составляет 12 вольт, тогда напряжение для нагрузки составит 10 вольт (12-2).

Когда контактные металлические наконечники изнашиваются, будучи не защищенными должным образом от высоких индуктивных или емкостных нагрузок, становится неизбежным появление повреждений от эффекта электрической дуги.

Электрическая дуга на контактах реле

Электрическая дуга на одном из контактов электромеханического прибора коммутации. Это одна из причин повреждения контактной группы при отсутствии надлежащих мер

Электрическая дуга — искрообразование на контактах — приводит к возрастанию контактного сопротивления наконечников и как следствие к физическим повреждениям.

Если продолжать использовать реле в таком состоянии, контактные наконечники могут полностью утратить физическое свойство контакта.

Но есть более серьезный фактор, когда в результате повреждения дугой контакты в конечном итоге свариваются, создавая условия короткого замыкания.

В таких ситуациях не исключается риск повреждения цепи, которую контролирует ЭМР.

Так, если сопротивление контакта увеличилось от влияния электрической дуги на 1 Ом, падение напряжения на контактах для одного и того же тока нагрузки увеличивается до 1×10=10 вольт постоянного тока.

Здесь величина падения напряжения на контактах может быть неприемлема для схемы нагрузки, особенно при работе с напряжениями питания 12-24 В.

Тип материала контактов реле

С целью уменьшения влияния электрической дуги и высоких сопротивлений, контактные наконечники современных электромеханических реле изготавливают или покрывают различными сплавами на основе серебра.

Таким способом удается существенно продлить срок службы контактной группы.

Серебряные наконечники контактов

Наконечники контактных пластин электромеханических приборов коммутации. Здесь представлены варианты наконечников, покрытых серебром. Покрытие подобного рода снижает фактор повреждений

На практике отмечается использование следующих материалов, коими обрабатываются наконечники контактных групп электромагнитных (электромеханических) реле:

  • Ag — серебро;
  • AgCu — серебро-медь;
  • AgCdO — серебро-оксид кадмия;
  • AgW — серебро-вольфрам;
  • AgNi — серебро-никель;
  • AgPd — серебро-палладий.

Увеличение срока службы наконечников контактных групп реле за счет уменьшения количества формирований электрической дуги, достигается путем подключения резистивно-конденсаторных фильтров, называемых также RC-демпферы.

Эти электронные цепочки включают параллельно с контактными группами электромеханических реле. Пик напряжения, который отмечается в момент открытия контактов, при таком решении видится безопасно коротким.

Применением RC-демпферов удается подавлять электрическую дугу, что образуется на контактных наконечниках.

Типичное исполнение контактов ЭМР

Помимо классических нормально открытых (NO) и нормально закрытых (NC) контактов, механика релейной коммутации также предполагает классификацию с учетом действия.

Особенности исполнения соединительных элементов

Конструкции реле электромагнитного типа в этом варианте допускают наличие одного или нескольких отдельных контактов переключателя.

Реле с конфигурацией SPST

Таким выглядит прибор, технологически сконфигурированный под исполнение SPST – однополюсный и однонаправленный. Существуют также другие варианты исполнения

Исполнение контактов характеризуется следующим набором аббревиатуры:

  • SPST (Single Pole Single Throw) – однополюсный однонаправленный;
  • SPDT (Single Pole Double Throw) – однополюсный двунаправленный;
  • DPST (Double Pole Single Throw) – двухполюсный однонаправленный;
  • DPDT (Double Pole Double Throw) – двухполюсный двунаправленный.

Каждый такой соединительный элемент обозначается, как «полюс». Любые из них могут подключаться или сбрасываться, одновременно активируя катушку реле.

Тонкости применения приборов

При всей простоте конструкции коммутаторов электромагнитного действия, существуют некоторые тонкости практики использования этих приборов.

Так, специалисты категорически не рекомендуют подключать в параллель все контакты реле, чтобы таким способом коммутировать цепь нагрузки с высоким током.

Например, подключать нагрузку на 10 А путем параллельного соединения двух контактов, каждый из которых рассчитан на ток 5 А.

Эти тонкости монтажа обусловлены тем, что контакты механических реле никогда не замыкаются и не размыкаются в единый момент времени.

В результате один из контактов в любом случае будет перегружен. И даже с учетом кратковременной перегрузки, преждевременный отказ прибора в таком подключении неизбежен.

Сгоревшее реле

Неправильная эксплуатация, а также подключение реле вне установленных правил монтажа, обычно заканчивается вот таким исходом. Внутри выгорело практически все содержимое

Электромагнитные изделия допустимо использовать в составе электрических или электронных схем с низким энергопотреблением как переключатели относительно высоких токов и напряжений.

Однако категорически не рекомендуется пропускать разные напряжения нагрузки через соседние контакты одного прибора.

Например, коммутировать напряжение переменного тока 220 В и постоянного тока 24 В. Всегда следует применять отдельные изделия для каждого из вариантов в целях обеспечения безопасности.

Приемы защиты от обратного напряжения

Значимой деталью любого электромеханического реле является катушка. Эта деталь относится к разряду нагрузки с высокой индуктивностью, поскольку имеет проводную намотку.

Любая намотанная проводом катушка обладает некоторым импедансом, состоящим из индуктивности L и сопротивления R, образуя, таким образом, последовательную цепь LR.

По мере протекания тока через катушку, создается внешнее магнитное поле. Когда течение тока в катушке прекращается в режиме «отключено», увеличивается магнитный поток (теория трансформации) и возникает высокое обратное напряжение ЭДС (электродвижущей силы).

Это индуцированное значение обратного напряжения может в несколько раз превосходить по величине коммутационное напряжение.

Соответственно, появляется риск повреждения любых полупроводниковых компонентов, размещенных рядом с реле. Например, биполярный или полевой транзистор, используемый для подачи напряжения на катушку реле.

Схемы защиты управления

Схемные варианты, благодаря которым обеспечивается защита полупроводниковых элементов управления – транзисторов биполярных и полевых, микросхем, микроконтроллеров

Одним из способов предотвращения повреждения транзистора или любого переключающего полупроводникового устройства, включая микроконтроллеры, является вариант подключения обратно смещенного диода в цепь катушки реле.

Когда ток, протекающий через катушку сразу после отключения, генерирует индуцированную обратную ЭДС, это обратное напряжение открывает обратно смещенный диод.

Через полупроводник накопленная энергия рассеивается, чем предотвращается повреждение управляющего полупроводника – транзистора, тиристора, микроконтроллера.

Часто включаемый в цепь катушки полупроводник называют также:

  • диод-маховик;
  • шунтирующий диод;
  • обращенный диод.

Однако большой разницы между элементами нет. Все они выполняют одну функцию. Помимо использования диодов с обратным смещением, для защиты полупроводниковых компонентов применяются и другие устройства.

Те же цепочки RC-демпферов, металло-оксидные варисторы (MOV), стабилитроны.

Маркировка электромагнитных релейных приборов

Технические обозначения, несущие частичную информацию о приборах, обычно указываются непосредственно на шасси электромагнитного коммутационного прибора.

Выглядит такое обозначение в виде сокращенной аббревиатуры и числового набора.

Маркировка электромагнитных реле

Каждое электромеханическое устройство коммутации традиционно маркируется. На корпусе или на шасси наносится примерно такой набор символов и цифр, указывающий определенные параметры

Пример корпусной маркировки электромеханических реле:

РЭС32 РФ4.500.335-01

Эта запись расшифровывается так: реле электромагнитное слаботочное, 32 серии, соответствующее исполнению по паспорту РФ4.500.335-01.

Однако подобные обозначения редкость. Чаще встречаются сокращенные варианты без явного указания ГОСТ:

РЭС32 335-01

Также не шасси (на корпусе) прибора отмечается дата изготовления и номер партии. Подробные сведения содержатся в техническом паспорте на изделие. Паспортом комплектуется каждый прибор или партия.

Выводы и полезное видео по теме

Видеоролик популярно рассказывает о том, как действует электромеханическая электроника коммутации. Наглядно отмечаются тонкости конструкций, особенности подключений и прочие детали:

Электромеханические реле уже довольно долгое время применяются в качестве электронных компонентов. Однако этот тип коммутационных приборов можно считать морально устаревшим. На смену механическим устройствам все чаще приходят более современные приборы – чисто электронные. Один из таких примеров – твердотельные реле.

Добавить комментарий

Ваш адрес email не будет опубликован.